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Introduction

Type 2 diabetes mellitus (T2DM) is one of the most 
important non-communicable diseases the prevalence 
of which is progressively increasing worldwide and is 
associated with an occurrence of cardiovascular (CV) 
disease and CV mortality in a global scale (1,2). Globally, 

415 million adults aged from 20 to79 years have T2DM 
and it is expecting up to 2025 the number of diabetics as 
will be 2-fold higher to today (3). The major risk factors 
for T2DM patients afflicted an increased risk of death 
are conventional predictors, such as abdominal obesity, 
hypertension, dyslipidemia, while other conditions 
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including microvascular and systemic inflammation, 
endothelial dysfunction, altered cardiac and vascular 
reparation, cardiac and kidney fibrosis, are involved in the 
plaque formation, atherosclerosis acceleration, development 
of CV remodeling, kidney dysfunction and heart failure 
(4-6). Finally, T2DM contributing to CV mortality and 
morbidity yields a large economic burden for patients and 
their families, public health and national health care systems 
in either developed or developing countries (7-9). It has 
been suggested that the risk of progression from prediabetes 
to T2DM and the CV event occurrence can be evaluated 
by several biomarkers that affect various pathophysiological 
stages of natural evolution of the disease (10,11). Moreover, 
biomarker-guided therapy of T2DM can vigorously 
strength the management of the disease and improve the 
s strategy toward prevention of the CV complications 
(12,13). The aim of the narrative review is to summarize 
the knowledge with respect to clinical perspectives of the 
implementation of the circulating biomarkers to stratify 
T2DM patients at higher CV risk. 

Methodology

The bibliographic database of life science and biomedical 
information MEDLINE, EMBASE, Medline (PubMed), 
the Web of Science, and the Cochrane Central were 
searched for English publications satisfying the key words 
of this study. We used the following key words [diabetes 
mellitus], [type 2 diabetes mellitus], [cardiovascular 
risk], [cardiovascular risk factors], [cardiac biomarkers]; 
[circulating biomarkers]; [prognosis]. Both authors 
independently evaluated the quality of the articles, 
correspondence to the main idea of the study, and 
constructed the final list of the references

The vicious cycle of T2DM and CV diseases

CV diseases  and events  are  at tr ibutes  of  T2DM  
progression (14). It has been established that hyperglycemia 
and lipotoxicity contribute to numerous molecular and 
cellular mechanisms, such as impaired insulin signaling, 
accumulation of advanced glycated end-products, altered 
cell autophagy, activation of renin angiotensin aldosterone 
and sympatric systems, and signal transduction though 
several receptors (G-protein receptor kinase, and β-2 
adrenergic receptors), which support the development of the 
oxidative stress, systemic and microvascular inflammation, 
endoplasmic reticulum and mitochondrial stress, neutrophil 

extracellular traps, and changes in myocardial and vascular 
structure (15-17). These common mechanisms are 
substantial for overlap in T2DM and conventional CV 
risk factors, such as hypertension, dyslipidemia, abdominal 
obesity, and smoking (18,19). Up-regulation in the 
inflammation, neurohumoral response and oxidative stress, 
and activation of the immune system in diabetics leads to 
microvascular inflammation, acceleration of atherosclerosis, 
cardiac and vascular remodeling, development of pro-
thrombotic state and finally the occurrence of CV events 
including CV death, nonfatal myocardial infarction, non-
fatal stroke, urgent hospitalization for unstable angina, 
life-threatening arrhythmias and heart failure (20-22). 
Figure 1 is reported the vicious cycle of T2DM and CV 
disease interplay. Thus, conventional CV risk factors, 
hyperglycaemia and metabolic abnormalities secondary 
to T2DM (lipotoxicity, insulin resistance, adipocytokine 
dysfunction), acceleration of atherosclerosis, cardiac 
hypertrophy and myocardial impairment, and vascular 
injury increases the risk of macrovascular and microvascular 
complications shaping the vicious cycle in T2DM (23,24).

CV biomarkers in T2DM

Whether T2DM patients has the same risk of premature 
death as those with established coronary heart disease and 
whether T2DM should be considered as equivalent to high 
and very high CV risk is not obvious and it is remaining 
under scientific debates now (25). Contemporary paradigm 
in T2DM management is based on the importance of point-
to-care therapies and stratification of the patients at CV 
risk based on considerations including aging, comorbidities, 
stablished CV diseases, and biomarkers not merely for 
glycaemia control, but applying several target organ 
damage (26-28). Circulating biomarkers reflecting various 
pathophysiological stages of the evolution of T2FDM and 
its CV complications allow identifying a risk of the patents 
and predicting clinical outcomes for many cases (Figure 2). 
Current clinical recommendations from the American Heart 
Association, the American Diabetes Association and the 
European Society of Cardiology focus on the biomarkers of 
biomechanical stress, fibrosis and inflammation (26-28).

Biomechanical stress biomarkers

Natriuretic peptides (NPs)

NPs are well established biomarkers of biomechanical 
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Figure 1 The vicious cycle in T2DM. T2DM, type 2 diabetes mellitus.
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stress due to cardiac wall stretching, volume overload, 
myocardial ischemia/necrosis, inflammation and myocardial 
hypertrophy (29). Having a wide range of specific function 
in the regulation of water and electrolyte homeostasis, 
vasodilation, diuresis, proliferative and inflammatory 
responses, the family of NPs is involved in the adaptive 
molecular mechanisms counteracting to cardiac and vascular 
remodeling, kidney fibrosis, and endocrine dysfunction (30).  
Atrial, brain and endothelial types of NPs exert their 
biological effects through specific receptors and play a 
protective role against the development of CV remodeling, 
microvascular inflammation, renal and endothelial 
dysfunction, accelerating atherosclerosis, metabolic 
abnormalities (insulin resistance, lipid metabolism), adipose 
tissue and skeletal muscle dysfunction (31-33). In addition, 
atrial and brain NPs regulate tissue expressions of the pro-
inflammatory genes and thereby mediate cardiac protective 
effect (34). Moreover, neprilysin gene expression in T2DM 

patients is under close control of NPs and this impact 
is driven through the epigenetically suppression of the 
H2AK5Ac, H2BK5Ac, H3K18Ac, and H4K8Ac histone 
acetylation (35). Yet, BNP is produced not merely cardiac 
myocytes, but adipocytes of white adipose tissue, and this 
fact explains why the circulating levels of NPs in obese 
patients and diabetics with abdominal obesity are higher 
to those who do not have obesity (36,37). Therefore, 
low expression of adipose tissue receptors for NPs was 
associated with abdominal obesity and can relate to 
epigenetic regulation (38). Overall, among T2DM patients 
NPs support insulin sensitivity and reduce white adipose 
tissue accumulation.

Previous clinical studies have shown the strong 
correlation between brain NP (BNP) and N-terminal 
fragment of BNP (NT-proBNP) and a risk of heart failure 
(HF) onset and admission (39-41). Elevated levels of 
NPs were found in T2DM patients with established CV 
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Figure 2 Circulating biomarkers in CV risk stratification among diabetics. sST2, soluble suppressor tumorigenecity-2; GDF, growth-
differentiation factor; hs-CRP, high sensitive C-reactive protein; TNF, tumor necrosis factor; IL, interleukin; ROS, reactive oxygen species; 
ECVs, extracellular vesicles; VEGF, vascular endothelial growth factor; TGF, transforming growth factor.
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disease regardless of HF presentation (42). In addition, 
increased levels of NPs predicted CV morbidity and 
mortality, myocardial infarction, stroke, HF occurrence 
and hospitalization due to HF and other CV events in 
T2DM individuals with recent coronary events (42,43). 
Interestingly, diabetics with coronary artery disease 
(CAD) who did not demonstrate declining NT-proBNP 
over 6 months had a significantly higher risk for CV 
mortality and HF development in comparison with 
those who demonstrated low levels of NT-proBNP for 
treatment period (43). Moreover, there were found strong 
interrelations between NT-proBNP plasma levels and a risk 
of premature death in T2DM patients having either HFrEF 
or HFpEF (44). In addition, NPs having a kidney clearance 
reflect a link between HF, mortality and renal disease. 
Indeed, the urine NT-pro-C-type of NP to creatinine ratio 
was more reproducible than the albumin to creatinine ratio 
and strongly associated with the presence of chronic kidney 
disease (45). These facts open out new perspectives to treat 
T2DM patients under serial monitoring of NPs, while 
recent The Diabetes Prevention Program has revealed 

significant racial and ethnic differences in the levels of 
NPs in follow-up (46). Thus, lower NPs levels in African-
Americans to white, American-Indian, and Asian individuals 
require serious explanation to identify the cardio-metabolic 
implications of serial measure of NPs levels in the clinical 
trials in the future.

Cardiac troponins

High sensitive cardiac troponins are established biomarkers 
of biomechanical stress,  myocardial  ischemia and  
necrosis (47). Mild elevation of serum levels of cardiac 
troponins is common in T2DM patients due to leakage 
of cell troponin fraction through damaged membranes 
of cardiac myocytes or in result of an increase in 
membrane permeability (48). It has been found that severe 
hypoglycemia/hypoglycemia and multiple CV risk factors 
could associate with elevated hs-TnT levels (49,50). Even 
youth with T2DM has demonstrated higher levels of high-
sensitive circulating troponin T (hs-cTnT) to healthy 
volunteers (51), but the clinical significance of this fact is 
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unclear and requires to be investigated in further long-term 
studies. Although an increase in the cardiac troponin levels 
among diabetics without clinical signs and symptoms of 
HF was associated with the highest tumor necrosis factor 
(TNF) receptor tertile and adverse echocardiographic 
parameters, such as higher left ventricular mass, left atrial 
internal dimension and E/Em ratio, these relationships 
were non-existent after adjustment for body mass and 
age (51). However, a large proportion of T2DM patients 
has established CV disease or is at higher risk of CAD. 
Consequently, elevated plasma levels of high sensitive 
cardiac troponins can reflect either subclinical ischemia-
related myocardial damage (≥99th percentile of reference 
level) or subclinical myocardial stress (<99th percentile of 
reference level) (52,53). It has been shown that increased 
levels of hs-cTnT in T2DM patients were correlated with 
persistent microalbuminuria, as well as elevated extracellular 
volume fraction, cardiac fibrosis, and diastolic dysfunction 
measured by CV magnetic resonance (54). Although hs-
cTnT plasma level was found to be powerful independent 
predictor for newly diagnosed HF in T2DM patients 
with CAD (55), the discriminative potency of BNP/NT-
proBNP was higher to hs-cTnT and combination of both 
biomarkers did not improve a prediction for HF (56-58). In 
contrast, among HFrEF patients with established T2DM 
combination of hs-cTnT and NT-proBNP demonstrated 
additive potency in CV risk prognosis (59). Finally, exercise-
induced hs-cTnI elevations above the 99th percentile 
independently predicted higher mortality and CV events in 
T2DM patients regardless of HF presentation (60).

Biomarkers of inflammation and fibrosis

Soluble suppressor tumorigenicity-2

Soluble suppression of tumorigenicity 2 (sST2) is an 
interleukin-1 receptor family member that is produced by 
cardiac myocytes, endothelial cells and certain immune 
cells. sST2 is up-regulated in response to biomechanical 
myocardial stress, inflammation and ischemia and exerts 
cardio-protective and atheroprotective actions through 
inhibiting IL-33/ST2 signaling (61). In the myocardium 
sST2 reduces fibrosis, inflammation, hypertrophy and 
apoptosis of cardiac myocytes (62). Although sST2 lacks 
disease specificity, it has been incorporated into some 
clinical recommendations to use as predictive biomarker 
of CV death and the development of HF (63). In patients 
with acute and chronic HF elevated serum levels of 

sST2 strongly related to HF severity and poor clinical  
outcome (64). Peak concentrations and serial measurement 
of sST2 added the prognostic information to conventional 
HF biomarkers including NT-proBNP and hs-cTnT 
(65,66). Therefore, sST2 is independent predictor of the 
no-reflow phenomenon in STEMI patients underwent 
primary percutaneous coronary intervention (67) and all-
cause mortality in individuals with atrial fibrillation (68).

Among general population elevated levels of sST2 
was associated with not merely HF, but with T2DM, 
metabolic abnormalities, T2DM-related renal disease and 
atherosclerosis (69-71). In the patients having pre-diabetes 
and T2DM elevated concentrations of sST2 (>35 ng/mL) 
strongly predicted newly diagnosed HF and HF-related 
outcomes including hospital admission and death (72-74). 
To sum up, sST2 is now one of independent predictors of 
CV mortality, all-cause mortality, HF occurrence and HF-
related outcomes in either general population or among 
T2DM patients.

Growth differential factor-15

Growth di f ferent ia t ion factor-15 (GDF-15)  i s  a 
multifunctional cytokine that belongs to transforming 
growth factor beta superfamily (75). It is widely expressed 
on the various cells and contributes to anti-inflammatory 
and tissue protective properties (76). GDF-15 suppresses 
c-Jun N-terminal kinase, Bcl-2-associated death promoter 
and epidermal growth factor receptor signaling pathway 
and stimulates Smad/eNOS, and PI3K/AKT signaling 
mechanisms to maintain a survival of cardiac myocytes, 
adipocytes, and progenitor and mature endothelial  
cells (75).

Numerous CV diseases including CAD, atherosclerosis, 
peripheral artery disease, acute myocardial infarction, HF, 
and stroke were accompanied by elevated concentrations 
of the GDF-15 (77-79). It has been reported that the 
circulating levels of GDF-15 >3,812 pg/mL are clearly 
indicative for T2DM among patients without established 
CV disease (80,81). The results of the Malmö Diet and 
Cancer-Cardiovascular Cohort have shown that serum 
levels of the GDF-15 predicted newly diagnosed T2DM 
and positively respond to metformin (82-84). Interestingly, 
the GDF-15 was associated with impaired fasting glucose 
levels and insulin resistance in non-T2DM population (85). 
Therefore, elevated levels of the GDF-15 were found to be 
predictive of all-cause mortality, diabetes mellitus related 
renal disease, HF, and HF-related outcomes in T2DM 
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(86-88). Thus, the measure of the serum levels of GDF-
15 appears to be promising in both CV and metabolic risk 
stratification, while it is not clear whether GDF-15 will be 
more meaningful biomarker to sST2 or NPs in patients 
at risk of T2DM or among diabetics with established CV 
disease including HF. In addition, there is no evidence 
what multiple combinations based in GDF-15, sST2, 
NPs, and cardiac troponins will be more optimal for risk 
identification.

Circulating convention cardiac biomarkers and 
antidiabetic drugs

Dipeptidyl peptidase-4 inhibitors

The dipeptidyl peptidase-4 (DPP-4) inhibitors were found 
to have a significant variability in their CV safety. For 
instance, the results of post-hoc analyses of 2nd and 3rd phases 
of randomized placebo controlled trials depicted DPP-4 
inhibitors (sitagliptin, saxagliptin, vildagliptin, linagliptin, 
and alogliptin) have shown a cardioprotective effect 
with a sustainable trend toward declining MACEs (89).  
In contrast, there were no significant differences between 
DPP-4 inhibitors and placebo in CV safety in the TECOS 
(Sitagliptin Cardiovascular Outcome Study) trial on 
sitagliptin, the EXAMINE (Cardiovascular Outcomes 
Study of Alogliptin in Subjects With Type 2 Diabetes 
and Acute Coronary Syndrome) trial on alogliptin, and 
the CAROLINA (Cardiovascular Outcome Study of 
Linagliptin Versus Glimepiride in Patients With Type 
2 Diabetes) trial on linagliptin. The SAVOR-TIMI 53 
(Saxagliptin Assessment of Vascular Outcomes Recorded 
in Patients With Diabetes Mellitus-Thrombolysis in 
Myocardial Infarction 53 trial) study has been reported that 
the treatment with saxagliptin versus placebo was associated 
with an increased risk or HF hospitalization (90-94). In 
addition, this increase in the risk was highest among patients 
with elevated levels of NPs, previous HF, or chronic kidney 
disease (90). Moreover, hs-TnT, NT-proBNP, and hs-
CRP were related to a reduction in eGFR (<40%) and HF 
hospitalization in patients with T2DM (91). Thus, cardiac 
biomarker predicted the occurrence and the progression of 
newly diagnosed HF in patient population with established 
T2DM.

Sodium glucose co-transporter 2 (SGLT2) inhibitors

Previous clinical studies have revealed that sodium glucose 

co-transporter 2 inhibitors may reduce CV and HF risk in 
HFrEF patients either with T2DM or without it (95-97). 
Interestingly, circulating levels of cardiac biomarkers, such 
as (NT-proBNP, hs-TnI, sST2, and galectin-3, modestly 
increased over two-year period among patients with poor 
clinical outcomes, whereas SGLT2 inhibitor canagliflozin 
delayed the rise in serum levels of NT-proBNP and hs-
TnI that was associated with improving prognosis (98). In 
the DEFINE-HF (Dapagliflozin Effects on Biomarkers, 
Symptoms and Functional Status in Patients with HF 
with Reduced Ejection Fraction) Trial the use of SGLT2 
inhibitor dapagliflozin over 12 weeks did not lead to the 
decrease in NT-proBNP serum levels, but was associated 
with meaningful improvements in HF-related quality of life  
status (99). The CV effects of new SGLT2 inhibitor 
ertuglif lozin has investigated in the VERTIS-CV 
trial (eValuation of ERTugliflozin effIcacy and Safety 
CardioVascular outcomes) trial, in which 30% drop in HF 
admission risk in the ertugliflozin arm versus placebo arm, 
was established (100). Whether serial measure of the levels of 
circulating cardiac biomarkers is effective in prediction of CV 
outcomes is not still reported. Overall, the treatment initiation 
with SGLT-2 inhibitors was associated with lower risk of death 
and HF admission in comparison with other antidiabetic drugs 
and their combinations among T2DM patients with pre-
existing CAD or at high risk of CAD (101,102). In this context, 
novel biomarkers can be used to thoroughly evaluate the CV 
risk and predict HF-related outcomes in diabetics without 
established CV disease and HF (103). 

Glucagon-like peptide-1 receptor agonists

In the meta-analysis of 34 clinical trials (n=14,464) 
there were no differences in CV safety within short-
acting glucagon-like preptide-1 (GLP-1) exenatide and 
lixisenatide or long-acting (albiglutide, dulaglutide, once-
weekly exenatide, liraglutide and taspoglutide) groups (104).  
GLP-1 receptor agonists did not reduce the risk for HF 
hospitalization in T2DM and their safety in patients with 
known HF remains equivocal (105). Whether cardiac 
biomarkers are effective in HF risk stratification is not 
completely understood (10).

Other biomarkers

Matrix metalloproteinases (MMPs)

The family of MMPs is  a group of Zn-contained 
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proteolytic enzymes the main biological function of 
which is extracellular matrix turnover (106). In T2DM 
MMPs implicate with the development and advance of 
diabetic-related complications including cardiomyopathy, 
atherosclerosis, nephropathy, retinopathy, authonomic 
and per iphera l  neuropathies ,  and microvascular 
angiopathy (107,108). MMP-2, MMP-3, and MMP-
9 were found in elevated concentration in the peripheral 
blood among patients with T2DM having a higher risk 
of the microangiopathy and retinopathy (109,110). It has 
been suggested that these MMPs regulating function of 
immune cells (Treg, macrophages), angiogenesis, vascular 
remodeling, repair vascular activity and apoptosis through 
activity through PPAR-alpha/gamma and tissue inhibitor 
MMP-1-(TIMP-1)-mediated mechanisms and also via NF-
κB and MAP kinase signaling pathways are able to modulate 
tissue susceptibility to ischemia and injury (111-113). In 
fact, MMPs could have a dual role in T2DM contributing 
to the occurrence of the cardiomyopathy, retinopathy, and 
vascular complications at the early stages of the disease, 
and modulating tissue protection at the late stages through 
suppression of vascular permeability capillary cell apoptosis, 
neovascularization and potentiation of mitochondrial stress 
and extracellular matrix remodeling. Overall, there is no 
convincing evidence that MMPs reduce the risk of CAD 
or HF and their expression/concentration could be concise 
biomarker of the disease progression.

Vascular endothelial growth factor

Vascular endothelial growth factor-1 (VEGF-1) is an 
important endogenous tissue protective factor contributing 
to angiogenesis, vascular function, proliferation and 
apoptosis (114). It has been found increased tissue 
expression and elevated circulating concentration of VEGF-
1 among animals and patients having T2DM (115,116). 
VEGF-1 reduced production of pro-inflammatory cytokines 
(TNF-alpha, IL-6, IL-1-beta), monocyte chemotactic 
proteins-1, intercellular adhesion molecule-1 and mobilize 
proliferative activity of progenitor endothelial cells via 
phosphorylation of p65 Nuclear Factor Kappa B (NF-κB) 
and Extracellular signal Regulated Kinase (ERK) 1/2 (117). 
There is evidence of the fact that VEGF-1 directly activated 
several major trophic factors, such as TGF-beta, myocyte 
enhancer factor 2c, stromal-derived factor-1 and thereby 
influenced the progenitor cell cascade (118,119).

Numerous complications of T2DM (renal disease, 
ret inopathy,  microangiopathy,  macroangiopathy, 

accelerating atherosclerosis) were associated with altered 
expression of the VEGF-1 and declined circulating levels of 
this peptide (120-122). Probably, elevated levels of VEGF-
1 protect against the ischemia injury and the acceleration of 
atherosclerosis (123,124). Whether continuous monitoring 
of the circulating levels of VEGF-1 is useful to stratify 
patients having T2DM at higher risk of T2DM-related 
complications and adjust the therapy is not clear.

Collagen turnover biomarkers

Development and progression of T2DM is associated 
with remarkable loss of bone mass, increased CV risk 
and a risk of fragile (125). Therefore, the progression of 
atherosclerosis and ectopic calcifications including vascular 
and cardiac valve calcification accompany by altered 
profile of collagen turnover biomarkers (126). There are 
numerous data, which confirmed the predictive role of 
bone-related proteins (osteopontin, osteoprotegerin) and 
collagen turnover biomarkers (carboxyl-terminal peptide 
of procollagen type I, carboxyl-terminal telopeptide of 
collagen type I, and amino-terminal peptide of procollagen 
type III) in CV mortality, HF occurrence and progression, 
chronic kidney disease, and MACEs (125,127-130).

Serum levels of the bone resorption marker (C-terminal 
cross-linked telopeptide) and the bone formation 
markers (osteocalcin and procollagen type 1 amino 
terminal propeptide) were significantly lower, whereas 
concentrations of both osteoprotegerin and sclerostin 
were higher in T2DM patients in comparison with healthy 
volunteers (131). These finding indicate that the collagen 
homeostasis is critically important for the development 
and the progression of T2DM and that control for 
glucose metabolism may relate to osteopenia and CV risk 
through altered production of bone-related proteins, such 
as osteopontin, osteocalcin, and osteoprotegerin (132). 
Another meta-analysis consisting of 611 clinical studies 
has shown that C-terminal cross-link of collagen, insulin-
like growth factor-1, and sclerostin may potentially predict 
the fractures among T2DM patients (133). In fact, some 
investigators reported that T2DM-related microvascular 
disease and CV risk were associated with the impaired 
profile of collagen turn-over biomarkers, circulating levels 
of osteopontin and osteoprotegerin, but after adjustment 
for glomerular filtration rate these interrelations were 
sufficiently diminished or even completely missed (134-136). 
However, large longitudinal studies are needed to elucidate 
whether collagen turn-over biomarkers are independent 



AME Medical Journal, 2021Page 8 of 16

© AME Medical Journal. All rights reserved. AME Med J 2021;6:18 | http://dx.doi.org/10.21037/amj-20-147

predictors of CV events and T2DM-related complications.

The number and function of the endothelial progenitor 
cells (EPCs)

EPCs are a heterogeneous population of endothelial 
precursors originated from bone marrow stem cells or 
peripheral tissue resident cells and having pro-angiogenic 
and tissue protective abilities (137). The natural evolution 
of T2DM is associated with decrease in the number of 
the EPCs and weak their functional ability to differentiate 
into mature endothelial cells and mediate the vascular 
reparation, which was called EPC dysfunction (138-140).  
Lowered number of circulating EPCs strongly correlated 
with CV risk and predicted MACEs, CV diseases 
including myocardial infarction and HF, and T2DM-
related complications (141-143). Restoring the number and 
function of EPCs was associated with improvement in NO 
bioavailability, endothelial function, neovascularization, and 
decrease in the risk of poor clinical outcomes in T2DM 
(144,145).

Thus, the number of EPCs is promising biomarker with 
predictive ability and potential therapeutic target, whereas 
functional abnormalities of EPCs have demonstrated more 
close relation to poor clinical outcomes, when compared to 
merely measure of the number of EPCs, but difficulties to 
implementation of this approach in the routine laboratory 
practice make investigators to use a measure of EPC count 
in peripheral blood (146,147). Future investigations could 
affect EPC alterations as predictive biomarkers of long-
term outcomes and mortality among T2DM.

Endothelial cell derived extracellular vesicles (EVs)

Endothelial cell derived EVs are produced by progenitor 
and mature endothelial cells and are a crucial element 
in cell-to-cell cooperation and transportation of several 
molecules (proteins, lipids, growth factors and hormones, 
active molecules, non-coding RNAs) to target cells 
(148,149). There is a large body of evidence of the fact 
that T2DM development corresponded to altered profile 
of circulating EVs (150,151). For instance, metabolic 
syndrome in patients without known CV disease is 
associated with increase in the levels of endothelial cell 
derived EVs, but patients T2DM, morbid obesity, CAD, 
and HF demonstrated lower levels of EVs originated 
from endothelial cells to those who did not established 
CV or metabolic disease (152-154). Moreover, some 

previous meta-analysis have revealed that increased levels 
of apoptotic endothelial cell derived EVs and decreased 
mature endothelial cell derived EVs were associated with 
higher CV risk and the risk of occurrence and progression 
of CAD and HF (155-157). EVs are promising biomarkers 
which can be either predictor or targets for innovative 
therapeutic approaches in the future.

Biomarkers related to CV rehabilitation, exercise or 
lifestyle modification

Cardiac rehabilitation reduces all-cause and CV mortality in 
T2DM patients with established CV disease (158). Modest 
improvements in long-term survival among diabetics with 
known CV disease suggest that cardiorespiratory fitness 
programs may require optimization with longitudinal 
cardiac biomarker measure. For instance, the coincidence 
of completion of exercise training with the decrease in 
the levels of NPs or sST2 would be a good confirmation 
of success in cardiac rehabilitation. Although the acute 
effects of continuous moderate intensity aerobic exercise 
and high intensity interval aerobic exercise on endothelial 
function, arterial stiffness, cardiac remodeling in obese 
patients having prediabetes and T2DM were widely 
investigated, the remote effects of cardiorespiratory fitness 
programs among these individuals under control of cardiac 
biomarker measure need to be evaluated in the future. 
However, there is evidence regarding that the concomitant 
reduction in adiposity or circulating biomarkers in patients 
having prediabetes or T2DM after exercise training 
program for 3-month period was associated with serious 
benefits in cardiometabolic health including beneficial 
effects on plasma lipids and fasting glucose (159-161). 
The STABILITY (Stabilization of Atherosclerotic Plaque 
by Initiation of Darapladib Therapy) study has been 
revealed strong association between decrease in all-cause/
CV mortality and greater physical activity in the subgroup 
of patients at higher risk estimated by the ABC-CHD 
(Age, Biomarkers, Clinical-Coronary Heart Disease) risk  
score (162). Yet, life style modification and Mediterranean 
diet was associated with lower mortality in patients with CV 
disease, but not those who had T2DM without established 
CAD (162). In this context, circulating cardiac biomarkers 
could individualize non-pharmacological approach in those 
with the highest mortality risk. Probably, other biomarkers 
reflecting the endothelial function and inflammation will 
be useful for prediction of the risk of future CV events in 
diabetics (163,164). Large multicentre clinical trials are 
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necessary to confirm these assumptions.

Future perspectives

The discovery of new biomarkers appears to be promising, 
while a lack of longitudinal investigations with aim to 
compare face-to-face conventional and new biomarkers 
make use speculative approaches to explanation of 
advantages and challenging. Perhaps, multiple markers 
models will be more acceptable to stratify at CV risk T2DM 
patients. In addition, there is a need to evaluate whether 
conventional and novel biomarkers could be powerful 
prognostic predictor for clinical outcomes in T2DM 
patients after MACEs. Large clinical trials are required to 
be planned and executed in the future to clearly elucidate 
what biomarker models are most optimal for this matter.

The limitations and quality of the articles 
reviewed

The limitations of the narrative review were a search of the 
article written English and a lack of blinded evaluation of 
the quality of them.

Conclusions

There is a wide range of circulating cardiac biomarkers that 
were widely investigated and incorporated into diagnostic 
and predictive models for patients at higher risk of CV 
disease and events. Conventional approach is based on 
the use of NPs and cardiac troponins in routine clinical 
practice, whereas there is no evidence that these biomarkers 
have equal diagnostic and predictive values for patients with 
prediabetes and established T2DM. 
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